
Komputer wyposażony w odpowiednie oprogramowanie jest w stanie zauważyć skomplikowane zależności, których ludzki umysł nigdy by nie dostrzegł. Tylko pozwólmy maszynie znaleźć reguły - mówi w rozmowie z PAP dr Rafał Kurczab, który w poszukiwaniu nowych leków używa algorytmów uczenia maszynowego (machine learning).
Uczenie maszynowe (ang. machine learning) to koncepcja zakładająca, że zamiast programować komputery do wykonywania konkretnych zadań – jak podchodzono do tego wcześniej – można zaprogramować je tak, aby rozpoznawały skomplikowane wzorce i doskonaliły swoje działanie w oparciu o zdobyte wcześniej dane.
Uczenie maszynowe coraz lepiej spisuje się też w pracy banków, sieci handlowych czy firm marketingowych - by precyzyjnie analizować potrzeby klientów, bazując na ich wcześniejszych działaniach.
Ale uczenie maszynowe stosowane jest też przez naukowców. Jak wyjaśnia dr Rafał Kurczab z Instytutu Farmakologii PAN w Krakowie, on sam używa algorytmów uczenia maszynowego, aby szukać nowych związków aktywnych biologicznie.
Dodaje, że algorytmy uczenia maszynowego pomagają zoptymalizować dobór reagentów w syntezie chemicznej, co w konsekwencji pozwala na efektywniejsze poszukiwanie nowych związków aktywnych biologicznie.
- Za pomocą sztucznej inteligencji możemy szybciej i sprawniej przeszukiwać duże bazy danych - zawierające informacje o milionach związków, które zostały już zsyntetyzowane, albo które można wytworzyć - opowiada dr Kurczab.
Podaje przykład, że koledzy z Uniwersytetu Jagiellońskiego poprosili go o wyselekcjonowanie związków, jakie można przygotować z dostępnych na rynku odczynników chemicznych, które najskuteczniej działałyby na pewien konkretny cel biologiczny.
- Gdybyśmy wzięli wszystkie reagenty, które pasują do tej reakcji, to można by otrzymać ponad 51 mln różnych związków. A my stosując różne modele otrzymaliśmy listę 100 związków, które mogły być najbardziej skuteczne. Współpracownicy z UJ zsyntetyzowali je, a 80 z nich rzeczywiście było aktywnych - opisuje dr Kurczab.
Zadania, z jakimi mierzą się algorytmy, mogą być różne. Czasami pokazuje się algorytmowi miejsce wiązania w receptorze, które ma konkretny kształt. I algorytm wyszukuje związek, który w ten kształt się może dobrze wpasować. Czasem z kolei znane są tylko związki, które na dany receptor działają i trzeba znaleźć do nich podobne, mimo że struktura samego receptora często jest nieznana.
Newsletter
Rynek Aptek: polub nas na Facebooku
Obserwuj Rynek Aptek na Twitterze
RSS - wiadomości na czytnikach i w aplikacjach mobilnych